A theoretical study on electronic predissociation in the NeBr2 van der Waals molecule
نویسندگان
چکیده
0301-0104/$ see front matter 2011 Elsevier B.V. A doi:10.1016/j.chemphys.2011.09.015 ⇑ Corresponding author. E-mail address: [email protected] (K.C. Janda). We present the first comprehensive ab initio study of the Ne–Br2 potential energy surfaces and the nonadiabatic couplings between the valence excited electronic states. These ab initio results are used to obtain 3-D approximate potentials for each electronic state, and these potentials are used in a wave packet calculation of the competing electronic predissociation and vibrational predissociation dynamics. The results of this calculation are in excellent agreement with both experimental results and a previous empirical fit to the experiments. The calculations allow us to observe not only the competition between vibrational and electronic dynamics for the dimer, but also the competition between two different electronic channels. Coupling to the 2g state dominates for the levels studied here, but coupling to the C state is progressively more important for low vibrational levels, and may dominate at levels below which the current results pertain. The ability of ab initio surfaces and couplings to so accurately reproduce experimental data raises the hope of a complete understanding of the VP and EP dynamics for other Rg-halogen dimers. Success in the case presented here is largely due to the fact that the VP dynamics for the vibrational levels in this study are in the simple, direct regime. Understanding the simple case so thoroughly provides new hope that the more complicated examples, such as ArI2 and NeCl2, for which experiment and theory are not currently in accord, may yet yield to analysis. 2011 Elsevier B.V. All rights reserved.
منابع مشابه
Competition between electronic and vibrational predissociation dynamics of the HeBr2 and NeBr2 van der Waals molecules.
Direct measurements of the lifetimes of He(79)Br(2) and Ne(79)Br(2) B-state vibrational levels 10 < or = nu' < or = 20 have been performed using time-resolved optical pump-probe spectroscopy. The values do not obey the energy gap law for direct vibrational predissociation. For both molecules, the dissociation rate for nu'=11 is much faster than for nu'=12, and the nu'=13 rate is also faster tha...
متن کاملRotational predissociation of strongly anisotropic van der Waals complexes: The He-CO example.
A very accurate method is applied, within the theoretical framework of the scattering closecoupling equations, to treat rotational predissociation processes in the He-CO van der Waals molecule. The method was already employed successfully to study vibrational predissociation of the HeI2 complexes and shows in the present case significant differences with several approximate methods used to esti...
متن کاملBreaking van der Waals molecules with magnetic fields
Manipulating dynamics of molecules with external fields has long been a sought-after goal of experimental and theoretical research. Several groups have studied elastic and inelastic collisions of ultracold alkali atoms in the presence of Feshbach scattering resonances [1–6]. It was found that the probabilities of elastic collisions and inelastic energy transfer undergo dramatic changes near Fes...
متن کاملHighly Sensitive Detection of H2S Molecules Using a TiO2-Supported Au Overlayer Based Nanosensors: A Van Der Waals Corrected DFT Study
The adsorption of the H2S molecule on the undoped and N-doped TiO2 anatase supported Au nanoparticles were studied using density functional theory calculations. The adsorption of H2S on both Au and TiO2 sides of the nanoparticle was examined. On the TiO2 side, the fivefold coordinated titanium site was found to be the most favorable binding site, giving rise to the strong interaction of H2S wit...
متن کاملModifications of Internal Molecular Structures of Asphalt Components Due to Physical Aging
The internal structure of a molecule can be presented in terms of intra-molecular (i.e., inter atomic)and inter-molecular energies such as van der Waals, bond and bending, torsion, and inversion energy.In this study, changes in molecular energies of individual asphalt components are evaluated as afunction of physical aging factors. The factors for physical aging such as temperature and pressure...
متن کامل